SwipeClock Developer

Development Options For Any Integration

TIMEKEEPING ANYWHERE

Contents
R U100 0 =1 75 PP UPTPRPNY 2
[=R = To [T (R S PTTPPPR 2
RO = TS = T 4
Step 1: Authenticate Against SwipeClock’s OAuth Token Endpointccccc . 4
Creating @ JWT HEAUEN ..uiiiiiiiiiiiiiiiieiiiiieeetteeeeeeeeeeeaeeeseeessssessssessssasssssssssssssssssssssssssssssssssssssssesssssnnennns 4
Creating @ JWT BodY/Payloadcooiiuiiiiiiee ettt e e et e e e e e e eataa e e e e e e e e e narraeeeas 4
Creating @ JWT SIgNatUre ... st e e e e e et s e e eea s e e aaa s e e seeanseeeananans 6
Posting a JWT to SwipeClock’s OAuth Token Endpoint........cccccooiiiiii 6
Step 2: Complete the Single Sign On into SWIpeClock’s ..o 8
Embedding the Web Clock as iframe.........cooooiiiiiiii 8
SSO into SwipeClock’s ESS in a New Browser Window/Tabcceeeeiiiiiiiiiiiiiieic e 10
FOr MOre iNfOrMatioNcoo ittt st e st e e s e e s s e e e snrees 12

Summary

This document provides an overview of how to complete a single sign on (SSO) into SwipeClock.
SwipeClock’s SSO model follows an OAuth 2.0 JWT Bearer Token Flow. JWT stands for JSON Web Token
which is JSON-based security token encoding that enables identity and security information to be shared
across domains. For more information on JWT visit https://jwt.io.

The standard workflow of the OAuth 2.0 JWT Bearer Token Flow is as follows:

1. The JWT created is posted to SwipeClock’s OAuth token endpoint.

2. SwipeClock’s OAuth token end point validates the content and signature of the JWT token.

3. Assuming the posted JWT is valid and from an approved integration partner, an access token is
issued.

4. The issued access token includes an expiration date and is valid for subsequent calls to other
SwipeClock APl endpoints (including SSO endpoints).

When completing an SSO into SwipeClock, you can display SwipeClock’s system in one of two ways:

1. Embedded HTML iframe/object
2. Independent browser window/tab

It's your preference and this document will share samples of each.
Pre-Requisites

Before accessing any of the exposed SwipeClock APls, you must first obtain an APl secret. This secret is
your “password” to programmatically access SwipeClock’s APl endpoints.

In order to understand the types of API secrets available, it's important to review the hierarchy built into
SwipeClock’s systems. The image below depicts some important entities and actors in SwipeClock.

Partner/Accountant

(Example: ABC Payroll)

i
’

Site Site
(Example: Steve’s Lawn Care, Inc) ’s Pizza Shop)

Steve Jones Larry Barnes Sally Mae Tony Red Sal Tree Harry Martin Anne Smith Ed Frank

WORKFORCE MANAGEMENT

3.

Partner/Accountant — A partner/accountant administers any number of sites below them. A
typical example of a partner is a payroll provider who has setup SwipeClock for a number of
employers they manage.

Client/Site — A client/site is an end employer setup for SwipeClock’s services. Each site will have
a number of employees managed. In our image we have three sites: Steve’s Lawn Care, Joe’s
Pizza Shop and Dr. Martin’s Office.

Employee — an employee using SwipeClock’s services.

Now that you’re familiar with the entities within SwipeClock’s landscape, we’ll review the types of API
secrets available:

1.

Partner/Accountant API Secret — this secret provides access to all administered sites and
employees within a specific partner/accountant in SwipeClock. Only users with
partner/accountant level administration rights have the ability to generate and view this level of
secret. To do this, follow these steps:

a. Signin at https://payrollservers.us/pg

b. Click on “Accountant Options” on the left hand menu

c. Within “Accountant Options”, click on the Accountant Menu link

[CACCOUNTANTOPTIONS]

SwipeClock LLC (In House demo-
misc)

Accountant Menu

Accountant List

Client List

Migration Candidate List
Client List Dashboard
d. Within “Accountant Options”, click on the Accountant Level Secret Management link in

the main window frame

ACCOUNTANT ADMINISTRATIVE TOOLS

Accountant Level Secret Management Generate, view or regenerate your AP| secret for accessing the SwipeClock API with accountant level privileges
Add Hardware Purchase Add merchandise purchases to your resellers’ invoices.
Credit Request Management Approve or decline credit requests

e. |If a partner/accountant API secret has already been generated you can view it. If you
need to, you can regenerate a new APl secret by clicking the “regenerate” button.
Please note that regenerating a new secret will deactivate all prior partner/accountant
level secret issued on your account which may affect current SwipeClock integrations. If a
secret has not been generated yet, click the “Generate” button to create a new one.

Client/Site API Secret — this secret provides access to just the site it’s created for and all
employees within this site. Like partner APl secrets, only users with partner/account level
administration rights have the ability to generate client API secrets. Users who are client/site
level administrators can view these secrets by following these steps:

a. Signin at https://payrollservers.us/pg

b. Click on “Settings Menu” on the left hand menu

c. Within the “Settings Menu”, click on Client Level API Secret Management

d. Ifaclient APl secret has already been generated you can view it. If one has not been

generated, please contact your SwipeClock reseller to generate one for you.

WORKFORCE MANAGEM

11l Reports Menu

& Settings Menu

£* Client Configuration
Clock Management
Employee Bulletins
Processing Rules

Service Bureau
Employee Import Utility

Two-Factor
Authentication

Update Personal Info
Clock Status

Client Level API Secret
Management

L IR R R - R - - 2

View File Listing

Single Sign On
The single sign on workflow allows you to render SwipeClock with your platform as an embedded HTML
iframe/object or into a new browser window/tab. No matter which method you choose, the initial set of
steps are the same.

Step 1: Authenticate Against SwipeClock’s OAuth Token Endpoint

URL: https://clock.payrollservers.us/AuthenticationService/oauth2/userToken.

You must first create your JWT (tip: visit https://iwt.io/#libraries-io for a number of free libraries/SDKs
available for use to create your JWT).

Creating a JWT Header
The first part of your JWT will be the header. This identifies the algorithm and token type you’re using.
Included in the JWT header are:

Name Type Description
alg String Identifies the hashing algorithm used being used. Use “HS256".
typ String Identifies the type of token which is JWT. Use “JWT”.

Below is an example of a header of a JWT:

{

alg: "HS256",
typ: "JWT"

}

Creating a JWT Body/Payload
Included in the body/payload of your JWT should be the following elements in your JSON:

Name Type Description

iss String SwipeClock partner ID

product String twpemp = for employee SSO
[] —for supervisor SSO

WORKFORCE MANAGEMENT

Name Type Description

sub String partner = if you have a partner API secret
client = if you have a site APl secret
exp String A date in Unix epoch time. Visit
https://www.epochconverter.com/ for more information.
sitelnfo Object An object of name value pairs:

o type: “id”
e id: site ID of the employee/supervisor

user Object An object of name value pairs:
* type:
o “empcode” if you're identifying the employee by
their ID/code from the source payroll platform
o “id” if you're identifying the employee by their
SwipeClock clock number.

Below is an example of the JSON body/payload for your JWT for partner 1, site 69481 and employee
with employee code 1234 if you’re using a partner level APl secret.

{

iss: 1,
product: "twpemp",
sub: "partner",
exp: 1517004886,
siteInfo: {
type: "id",
id: “69481”
2
user: {
type: "empcode",
id: “1234”
1
1

Below is an example of the JSON body/payload for your JWT for partner 1, site 69481 and employee
with the employee code 1234 if you're using a client level API secret.

{

iss: 69481,
product: "twpemp",
sub: "client",
exp: 1517004886,
siteInfo: {
type: "id",
id: “69481”
2
user: {
type: "empcode",
id: “1234”
1
1

WORKFORCE MANAGEMENT

The differences between using the partner APl secret and client APl secret is within the following
elements of the JSON body/payload:

Entity Name Value when using a partner APl secret | Value when using a client API secret
iss Partner/Accountant ID Client/Site ID
sub “partner” “client”

Creating a JWT Signature

The last part of the JWT will be the signature. This is the result of taking the base64 encoding of the
header, base64 encoding of the payload and your API secret and signing it with the selected hashing
algorithm.

Below is an example of creating your full JWT within JavaScript (before actually posting the JWT to the
SwipeClock OAuth Token Endpoint) using a client API secret:

<script src="http://kjur.github.io/jsrsasign/jsrsasign-latest-all-min.js"></script>
<script type="text/javascript”>
let header = {alg: "HS256", typ: "IWT"};

let token = {
iss: 69481,
product: "twpemp",
sub: "client",
exp: 1517004886,
siteInfo: {
type: "id",
id: “69481"
2
user: {
type: "empcode",
id: “1234”
1
1

let jwt = KJUR.jws.JWS.sign("HS256", JSON.stringify(header), JSON.stringify(token),
“yUQsBz2aTWIL5iB203p2syXfQhfizyGX0Zr6UT4|75aHb7NRIN09ggAujFyR9fbu”);

</script>

Posting a JWT to SwipeClock’s OAuth Token Endpoint

Now that you have your JWT, the next step will be posting this to the SwipeClock OAuth Token Endpoint
to receive your access token. The JWT must be included in the HTTP Authorization header as a Bearer
token. Here’s a sample of using JavaScript (and jQuery) to add the JWT as a Bearer token and calling the
SwipeClock OAuth Token Endpoint:

<script src="https://code.jquery.com/jquery-3.1.1.min.js"></script>
<script type="text/javascript”>
$.ajax({
url: "https://clock.payrollservers.us/AuthenticationService/oauth2/userToken",
method: "POST",
headers: {
"Authorization": ‘Bearer [myJwt],

"Content-Type": "application/json"

WORKFORCE MANAGEMENT

L
success: (result, status) => {
if (result && result.token) {
// we’ve received an access token!
}else {
// An access token was not issued
}
L
error: (o, err) =>{
// An error occurred calling the token endpoint
}
1

</script>

Here’s a full JavaScript method to put all the pieces above together. In it, the JWT is created and posted
to the SwipeClock OAuth Token Endpoint. A JavaScript callback function is used to act on the result of
the post to the OAuth Token Endpoint.

<script src="https://code.jquery.com/jquery-3.1.1.min.js"></script>
<script src="http://kjur.github.io/jsrsasign/jsrsasign-latest-all-min.js"></script>
<script type="text/javascript”>

get)WT(“1”, “69481”, “1234”, “yUQsBz2aTWIL5iB203p2syXfQhfiZyGX0Zr6UT4175aHb7NRIN09gqAujFyR9fbu”, function(err, jwt){
if (err) {
console.log(Fail: ${err}’);
}else {
// JWT authenticated received. We have two options:
// 1. Host SwipeClock as an embedded iframe
// 2. Open up a new browser window/tab into SwipeClock
console.log(‘Success: ‘ + jwt);
}
1

function get)WT(partnerlD, sitelD, employeelD, apiSecret, callback){
let header ={ alg: "HS256", typ: "JWT" };

// body/payload token being created is based on using a client api secret
let token = {
iss: sitelD,
product: "twpemp",
sub: "client",
exp: Math.floor(Date.now() / 1000) + 60 * 5,
siteInfo: {
type: "id",
id: sitelD
12
user: {
type: "empcode",
id: employeelD
1
1

let jwt = KJUR.jws.JWS.sign("HS256", JSON.stringify(header), JSON.stringify(token), apiSecret);

console.log('Calling Authentication Service with JWT’ + jwt);

WORKFORCE MANAGEMENT

$.ajax({
url: "https://clock.payrollservers.us/AuthenticationService/oauth2/userToken",
method: "POST",
headers: {
"Authorization": ‘Bearer " + jwt,
"Content-Type": "application/json"
L
success: (result, status) => {
if (result && result.token) {
// we received an access token!
callback(null, result.token);
}else {
// An access token was not issued
callback('Status: ' + status + ', Result: ' + JSON.stringify(result), null);
}
L
error: (o, err) =>{
// An error occurred calling the token endpoint
console.log(o);
}
1
}

</script>

Step 2: Complete the Single Sign On into SwipeClock’s

All the hard work and heavy lifting of the SSO was done in step 1. Step 2 involves taking the access token
JWT returned from the SwipeClock OAuth Token Endpoint and using it to complete a single sign on into
the SwipeClock system. This can be done either as an embedded iframe/object or into a new browser
window/tab.

Either way you choose, the access token JWT you received will be added as a query string to one of the
following URLs:

e Web Clock: https://clock.payrollservers.us
e Employee Self Service (ESS): https://payrollservers.us/pg/ess

For example:

e Web Clock: https://clock.payrollservers.us/?jwt=[mylssued)wt]
e Employee Self Service (ESS): https://payrollservers.us/pg/ess?iwt=[mylssued)wt]

In the examples below, we'll look at two SSO rendering scenarios:

1. Embedding the Web Clock as an iframe
2. SSOinto Employee Self Service as a new browser window/tab

Keep in mind, you could implement either rendering option (iframe or new browser/tab) for either the
Web Clock or Employee Self Service.

Embedding the Web Clock as iframe
SwipeClock’s Web Clock is built to be stand-alone or as an embeddable widget. Embedding as a widget is
easily done using an HTML iframe or object tag. Below is a code example showing authentication against

the SwipeClock OAuth Token Endpoint and creating an iframe to display the web clock using a client API
secret.

<IDOCTYPE html>

<html>
<head>
<title>Embedded Web Clock Sample</title>
</head>
<body>
<h2 id="processingText">Please wait while we complete SSO and generate the SwipeClock Web Clock</h2>
<div id="result"></div>
<script src="https://code.jquery.com/jquery-3.1.1.min.js"></script>
<script src="http://kjur.github.io/jsrsasign/jsrsasign-latest-all-min.js"></script>
<script type="text/javascript">
S(function () {
// Invoked when the document is ready
getJWT("1", "69481", "1234", "yUQsBz2aTWIL5iB203p2syXfQhfiZyGX0Zr6UT4175aHb7NRIN09ggAujFyR9fbu", function
(err, jwt) {
if (err) {
console.log('Fail: ' + err);
S('#result').html('Fail: ' + err);
}else {
// JIWT authenticated received.
// Host SwipeClock as an embedded iframe
let webClockUrl = 'https://clock.payrollservers.us/?enclosed=1&compact=1&showess=1&jwt="+ jwt;
S('#result').html('<iframe src="" + webClockUrl + " style="height: 900px; width: 100%;"></iframe>');
S('#processingText').text('Please use the web clock below');
1
1
1

function get)WT(partner|D, sitelD, empcode, apiSecret, callback){
let header = {alg: "HS256", typ: "JWT"};

let token = {
iss: sitelD,
product: "twpemp",
sub: "client",
exp: Math.floor(Date.now() / 1000) + 60 * 5,
siteInfo: {
type: "id",
id: sitelD
5
user: {
type: "empcode",
id: empcode
1
1

let jwt = KJUR.jws.JWS.sign("HS256", JSON.stringify(header), JSON.stringify(token), apiSecret);
console.log('Calling Authentication Service with jwt: ' + jwt);

$.ajax({
url: "https://clock.payrollservers.us/AuthenticationService/oauth2/userToken",
method: "POST",

WORKFORCE MANAGEMENT

headers: {
"Authorization": 'Bearer ' + jwt,

"Content-Type": "application/json"
|3
success: (result, status) => {
if (result && result.token) {
// we received an access token!
callback(null, result.token);
}else {
// An access token was not issued
callback('Status: ' + status + ', Result: ' + JSON.stringify(result), null);
}
|3
error: (o, err) =>{
// An error occurred calling the token endpoint
console.log(o);
S('#result').html('<h3 style="color: red;">See the console log for error details.</h3>')
}
1
}

</script>
</body>
</html>

When embedding the web clock, you can also apply a few settings via query strings that help control the
layout of the clock. These query string settings include:

Query String Value(s) Description

Name

enclosed 1 (recommended) | If set to 1, the background and other extraneous content is
0 removed from the page when rendering.

compact 1 (recommended) | If setto 1, the Web Clock Ul elements are rendered smaller.
0

showess 1 If set to 1, a single sign on link is shown in the Web Clock to
0 SwipeClock’s ESS system (implemented as opening a new

browser window/tab).

SSO into SwipeClock’s ESS in a New Browser Window/Tab

Getting employee’s access into the full SwipeClock ESS system is often a better experience if completed
by opening a new browser window/tab. The example below shows how clicking on a button will invoke
the SSO call to SwipeClock and result in a new browser window opening with SwipeClock’s ESS.

<IDOCTYPE html>

<html>

<head>
<title>SwipeClock ESS SSO</title>

</head>

<body>
<h2>Please click the button to sign into SwipeClock's ESS system in a new browser window/tab</h2>
<button id="btnSso">Sign into SwipeClock’s ESS</button>

WORKFORCE MANAGEMENT

<div id="result"></div>
<script src="https://code.jquery.com/jquery-3.1.1.min.js"></script>
<script src="http://kjur.github.io/jsrsasign/jsrsasign-latest-all-min.js"></script>
<script type="text/javascript">
S(function () {
S('#btnSso').click(function () {
get/WT("1", "69481", "1234", "yUQsBz2aTWIL5iB203p2syXfQhfiZyGX0Zr6UT4175aHb7NRIN09ggAujFyR9fbu", function
(err, jwt) {
if (err) {
console.log('Fail: ' + err);
S("#result').html('Fail: ' + err);
}else {
// JIWT authenticated received.
// Access ESS via a new browser tab
let webClockUrl = 'https://payrollservers.us/pg/ess?jwt="+ jwt;
window.open(webClockUrl); }
1
1
1

function get)WT(partnerlD, sitelD, empcode, apiSecret, callback) {
let header ={ alg: "HS256", typ: "IWT" };

// body/payload token being created is based on using a client api secret
let token = {
iss: sitelD,
product: "twpemp",
sub: "client",
exp: Math.floor(Date.now() / 1000) + 60 * 5,
siteInfo: {
type: "id",
id: sitelD
12
user: {
type: "empcode",
id: empcode
1
1

let jwt = KJUR.jws.JWS.sign("HS256", JSON.stringify(header), JSON.stringify(token), apiSecret);

console.log('Calling Authentication Service with ' + jwt);

$.ajax({
url: "https://clock.payrollservers.us/AuthenticationService/oauth2/userToken",
method: "POST",
headers: {
"Authorization": 'Bearer ' + jwt,
"Content-Type": "application/json"
5
success: (result, status) => {
if (result && result.token) {
// we received an access token!
callback(null, result.token);
}else {
// An access token was not issued
callback('Status: ' + status + ', Result: ' + JSON.stringify(result), null);

}

5

error: (o, err) =>{
// An error occurred calling the token endpoint
console.log(o);
S('#result').html('<h3 style="color: red;">See the console log for error details.</h3>')

}

1
}

</script>
</body>
</html>

For more information

For more information on SwipeClock’s API capabilities, please visit http://developer.swipeclock.com or
email developersupport@swipeclock.com.

WORKFORCE MANAGEMENT

